

Using Drones to Reduce Malaria Prevalence in Madagascar

Preparing a drone for spraying

A fleet of spraying drones resting between flights

OVERVIEW	
Flying Labs	Madagascar Flying Labs
Geographic area	Morombe, Madagascar
Date range	February 2022 to March 2023

Sector program	<u>HealthRobotics</u>
Main SDGs	GOAL 3: Good Health and Well-being
	GOAL 9: Industry, Innovation and Infrastructure

SCOPE	
Project stakeholders Client: Abt Associates.	
Implementing partners: district and communities representative	es
from 39 villages.	
People impacted Communities of 39 villages.	
Number of people Approximately 190,000 people.	
impacted	
Problem In rural areas, anopheles mosquitoes responsible for malaria	
breed in wet zones such as the rice paddies around villages.	
Mosquitoes' behaviors are rapidly evolving. They are now active	ć
during the day, making the use of nets and in-habitat insecticide	5
ineffective. In a world-first project, Abt Associates proposed to	
spray wet areas near villages with bio-insecticide as a way to	
destroy breeding sites and reduce malaria prevalence.	
Project objectives The project's goal was to successfully spray breeding sites to	
reduce mosquito activities in the affected communities.	
Our objectives included:	
 Adequately mapping areas. 	
 Developing a methodology to define spraying areas. 	
Undertaking spraying.	
 Demonstrating the efficiency of the approach for Abt. 	
Scope The project involved using Google Maps to get an overview of the	he
target area, coming up with an approach to elect 39 project foc	us
areas. The team then mapped all the 39 areas, analyzed the dat	a,
defined the spraying sites, and undertook spraying. The spraying	g
exercise was conducted in 6 cycles, each with 2 passes.	
Outcome Research undertaken by Abt Associates revealed the following	
outcomes from the spraying activity:	
 Over the monitoring period, a 95–97% reduction of the langel density uses observed during the first two down 	
narval density was observed during the first two days	
posi-liedinent at each spray cycle.	
 Larviciums provides very good larval control, but the residual activity seems to be chart 	
The larvel density accomment conducted E or 7 days after	or
 The farval density assessment conducted 5 of 7 days and enrousing indicated the processes of 1st and 2nd largel 	31
spraying mulcaled the presence of 15t and 200 larval	
The spray protocol and guidance for the treatment	
 The spray protocol and guidance for the realment indicated an average of 14 days between each cycle 	
The renewal of the population after 7 days may need to	
be considered for future interventions	

Impact	For local communities, medium to long-term change would involve repeating the larviciding activity every year at a more intense rhythm than undertaken during this pilot project. Large scale larviciding could lead to eradication of malaria and improvement of community public health and wellbeing. This
Challenges	needs commitment from the international health organizations. The project areas are very remote and hard-to-reach, making logistics a challenge. We deployed drones with four-wheel-drive vehicles. which was costly.
Next steps	We hope that this activity will be mainstreamed in future health projects.

COMMUNITY ENGAGEMENT AND STAKEHOLDER SUPPORT	
Consent for cargo	We received authorization for flight for a specific site and consent
flight	from the community representatives.
Community	Abt Associates engaged with local communities (owners of
engagement activities	rice-paddies and local officials) in early behavior change
	communication activities. Our team received advice from the
	community leaders on the planned spraying dates. We conducted
	spraying activities in the presence of community representatives
	where possible.
Community groups	Community in general and community or village representatives.
engaged with	
Community	Community representatives and farmers whose rice paddies were
attendance	sprayed in the 39 communities included in the project.
Community feedback	At the start of the project, the communities were initially
	concerned about the spraying of agricultural plots and villages,
	which caused resistance. This was later solved through buy-in
	over time.
Stakeholder support	We developed the methodology for this project and provided the
	client with data and outputs. We also strengthened the client's
	capacity to develop the right approach to linking sanitary data
	(mosquito habits) with imagery (wet zones) and then turning it
	into a spraying plan.

CARGO	
Cargo transported	BTI (bio-insecticide)
Cold chain	N/A

HARDWARE AND SOFTWARE	
Cargo drone	DJI T30

Precision landing	N/A
Flight plan software	DJI software

FLIGHT OPERATIONS	
Delivery distance(s)	N/A
Number of flights	4916
Number of deliveries	N/A
Flight altitude	Within 50m above ground
Total cargo delivered	N/A
Total distance flown	N/A
Take-off/landing sites	39

COST BENEFIT ANALYSIS	
Speed savings	N/A
Cost savings	N/A