

Soil Suitability Analysis for Riziki Farm

Figure 1: Ortho mosaic for the church land plot of land

Figure 2: After flight engagement with the community to answer their questions about the project

Figure 3: NDRE zonation map for Fertilizer application basing on the Nitrogen deficiency needs of the soil

OVERVIEW	
Flying Labs	Uganda Flying Labs
Geographic area	Mazzi, Luweero, Uganda
Date range	11 th June, 2025
Sector program	<u>Agriculture</u>
Main SDGs	GOAL 1: No Poverty
	GOAL 2: Zero Hunger
	GOAL 9: Industry, Innovation and Infrastructure

SCOPE	
Project stakeholders	Riziki Farm
People impacted	Farm Management
Number of people	5 people
impacted	
	Due to soil nutrient deficiencies and high termite population
Problem statement	within some marshy colonies, Riziki Farm is huge and
	under-utilized. In order for the client to increase land productivity
	it was important to determine which specific crops were best
	suited for their soil type, ensuring long-term sustainable growth.
Project objectives	 To assess soil fertility across four identified land parcels.
	To determine suitability for maize and coffee cultivation.
	To generate spatially tailored fertilizer recommendations.
Scope	Within the scope of the project, we aimed to:
	I. Interface with and engage stakeholders for project
	reconnaissance.
	II. Curate soil sampling and lab analysis with the support of
	Makerere University.
	III. Deploy drone imaging while using the Normalise
	Difference Red Edge (NDRE) index for one plot.
	IV. Use Satellite Normalise Difference Vegetation Index
	(NDVI) to analyze three inaccessible plots.
	V. Create soil suitability maps.
	VI. Provide a final recommendation report shared with the
	client.
Outcome	The expected outcomes of the project include:
	1. To align NDRE and NDVI maps with lab results, to confirm
	the effectiveness of the use of drone imagery and satellite
	imagery.

	2. To cover four zones, assess and categorize them by level
	of fertility.
	3. To develop fertilizer application zones, while also
	determining whether organic or synthetic fertilizer is best
	suited to the various areas.
	4. To determine appropriate nutrient quantities.
	To develop recommendations for both maize and coffee cultivation.
	The actions/decisions that were taken after sharing the outcomes
	include:
	Client prioritized treatment of nutrient-deficient zones.
	Planning staggered maize and coffee cultivation.
	Initiated future consideration for further drone
	integration.
Impact	More efficient input use.
	Potential for yield increase.
	Shift toward data-driven practices.
	Empowered team with decision maps.
Challenges	 Inaccessibility of three plots due to heavy rains, closing off
	the routes to the land parcels (resolved using Sentinel-2 images).
	Lab result turnaround delays.
Next steps	Integrate drone imagery for monitoring crop and soil
	health.
	2. Follow-up with impact surveys in order to ensure that the
	applied prescribed fertilizer yielded the expected harvest.
	3. Train field staff on interpretation of the fertilizer
	application maps.
	4. Collaborating with agronomists on nutrient and fertilizer
	applications for estimates and quantities.

COMMUNITY ENGAGEMENT AND STAKEHOLDER SUPPORT	
Consent for data	Consent received from the farm owner.
acquisition	
Community	Informal session with farm staff on June 11th, 2025.
engagement activities	
Community groups	Farm Management, Community in General
engaged with	

Community	4 people.
attendance	
Community feedback	The community expressed an interest in knowing the use of the
	drone and how it is being utilized.
Stakeholder support	Shared maps and reports in visual formats for planning Targeted
	fertilizer application.

DATA ACQUISITION	
Size of area	Church Land Plot: approx. 2 hectares (0.02 km²)
Drone	DJI Phantom 4 Multispectral
Sensor(s)	Multispectral Sensor (DJI Multispectral)
Flight plan software	Ground Station Pro Mission Planner
Flight height	63 m AGL
GSD (Accuracy)	3.3 cm/pix
Number of images	127
acquired	
Number of flights	1
Time invested in data	25 MINUTES
acquisition	
Georeferencing	Onboard GPS

DATA PROCESSING & ANALYSIS	
Processing software	PIX4Dfields
Processing time	1 hour 30 minutes
Data products	Orthomosaic
	 Soil Nutrient (NDRE Map)
	Fertilizer Prescription maps
Analysis tools	 PIX4Dfields
	Sentinel open access Hub
Analysis outputs	Normalise Difference Red End (NDRE) & Normalise Difference
	Vegetation Index (NDVI)
Final outputs shared	Fertilizer prescription maps and a report
with stakeholders	
Data sharing	Email