

The use of drones for land survey and mapping to improve livestock grazing and farming

Digital Elevation Model of Ng'hoboko Village

Citizens of Ng'hoboko Village assisting Tanzania Flying Labs and each other to identify their farms

Surveyed farm boundaries on top of an orthomosaic

OVERVIEW	
Flying Labs	Tanzania Flying Labs
Geographic area	Meatu District in Simiyu Region (Tanzania)
Date	September 2018 - May 2019
Sector program	DevRobotics

SCOPE	
Stakeholders (clients)	Meatu District Council
	Meatu District Communities (farmers and herders)

Challenge	To undergo a new land planning initiative, the Meatu District
anciige	Council needed up-to-date maps of villages to be able to
	understand current land use patterns. Traditional surveying
	methods require direct access to properties, sometimes in
	difficult terrain and a specialised equipment, often too expensive
	or unavailable in small villages, therefore reliable land use plans
	of the Ng'hoboko and neighbouring villages were not yet
	available. Nowadays many Tanzanian herders migrate in search
	of greener pastures, which sometimes forces them to invade
	protected areas and neighbouring regions. This, topped with lack
	of land ownership certificates, causes disputes between farmers
	and herders.
Scope	Understand how drone data can add value to existing methods of
Scope	data collection and management by mapping village farms to
	create a cadastral map. Determine the cost of drone data
	collection and what additional value drone data can contribute.
	Determine where the challenges lie, both in acquiring drone data
	for land management applications and in combining it with other
	data sources to see if drones can be used to support the CCRO
	issuance process and to improve livestock grazing and farming
	outputs.
Outcome	Phase 1: drone data acquisition, creation of data products (maps)
	and first analysis of drone data
	Phase 2: Combining the drone data with other existing data
	sources and its integration of the into existing tools for land and
	resource rights. Once a farm has been surveyed, the owners are
	issued with "certificates of customary right of occupancy (CCRO)"
	or traditional title deeds.
Next steps	Development of land use plans for agriculture and registration of
	certificates in other villages.

DATA ACQUISITION	
Size of area	12 000 ha (120 km2)
Drone	senseFly eBee Plus
Sensor(s)	RGB / SODA
Flight plan software	eMotion
Flight height	425m above ground level
GSD (Accuracy)	10cm/pix
Number of images	9155
acquired	
Number of flights	51
Time invested in data	5 days (nearly 29h of flight time)
acquisition	
Georeferencing	Onboard GPS

DATA PROCESSING & ANALYSIS	
Processing software	Pix4Dmapper
Processing time	110h
Data products	Orthomosaic, DSM, DTM
Analysis tools	QGIS
Analysis outputs	Online map showing farms boundaries on top of an orthomosaic
Final outputs shared	Hard and soft copies of the orthomosaic, DSMs, DTMs, ArcGIS
with stakeholders	Online map:
	https://werobotics.maps.arcgis.com/apps/MapSeries/index.html
	?appid=073faca9c0eb46d293e76d2d86493eee
Data sharing	ArcGIS Online