

Drone technology bringing reality of farm land use

Orthomosaic produced

OVERVIEW	
Flying Labs	Uganda Flying Labs
Geographic area	Mazzi, Uganda
Date range	September 2024
Sector program	DevRobotics
Main SDGs	GOAL 2: Zero Hunger

SCOPE	
Project stakeholders	Riziki Farm
People impacted	The farm owners, stakeholders and partners
Number of people	50
impacted	
	The farm being large, the stakeholders were unable to track all
Problem statement	activities in the farm. There was also some fear that the land was
	being utilized by illegal squatters.
Project objectives	 To Identify terrain patterns.
	 To identify the land use of the farm.
	 To capture informal and formal buildings.
	 To identify illegal activities on the farm.

	• To understand the quantities of pastures for ranching.
	 To retrieve an inventory of under-utilized land and plan
	for development.
	• To ascertain the temporary land lease to the community.
Scope	The purpose of our flights was to do an aerial survey in Mazzi,
	Luwero to capture the data for clear alignment for development
	and decision making.
Outcome	• An orthomosaic was generated from the data which was
	digitized into a vector map for land use.
	 The data was evaluated to ascertain if there were any
	illegal buildings and cultivated land. The farmers also
	realized that there were remote areas that had been
	intruded by the local community.
	 It was also discovered that some of the dams were shared
	between two farms because they were located on the
	boundaries.
	 Overgrazed land was identified, with a plan to relocate
	the herds of cattle and goats to fresher pastures.
	• The road network in the farm was exposed to help the
	farm managers, clients that come to buy cattle know the
	most accessible routes for the collection trucks and other
	cars that come to collect and deliver farm supplies.
Impact	• The farmer will lease out land to some of the community
	to use for pineapples cultivation for their substance
	because they have little financial power to acquire their
	own land.
	• Real time data was shared with stakeholders as a tool for
	informed decision making.
	• Land use was established and all the fears were allayed.
Challenges	• The datasets were too huge and took more than a week
	to process the images.
	• There were gaps in some areas after stitching due to
	insufficient overlaps in other areas and failure of some
	images to calibrate.
	• We failed to capture some images even after a re-flight.
	The data took a long time to stitch.
	• The gaps were difficult for the digitizing team to identify
	with, we had some videos and pictures in critical spots
	captured with a smaller drone. That was our bridge to
	identifying the missed spaces.

	 The first orthomosaic was merged from 6 chunks with PIX4Dmapper but the output was not flawless; the connecting lines for the blocks were visible. Therefore, we had to reprocess it with PIX4Dmatic to achieve a smooth look. We also discovered that PIX4Dmapper has limitations of processing beyond 5000 images. For the first flight, we tried using ground station Pro but it was difficult to draw every chunk and ensure that they
Next steps	 We expect to fly in hot spots that are underutilized to analyze the quality and fertility of soil to facilitate data for decision making on the suitable crops. Some of the underutilized land had grown into dense thickets hence there is a need to have follow-up flights to analyze the soil quality with a multispectral camera in order for the proprietor to plant suitable crops as part of the development.

COMMUNITY ENGAGEMENT AND STAKEHOLDER SUPPORT	
Consent for data	The project was dedicated to the farm owners needs hence the
acquisition	data is solely for their consumption.
Community	• The farm manager informed all the neighboring farms
engagement activities	about the flight to minimize any suspicion.
	 The local chairman was informed, including security
	bodies. The flight did not need a lot of engagement
	because the interest was limited to the owners of the
	project.
Community groups	Farm stakeholders.
engaged with	
Community	Not applicable.
attendance	
Community feedback	Not applicable.
Stakeholder support	After handover of the datasets, we also did a demonstration of
	software applications that would support continuous
	visualization of the data beyond our presence. We also helped
	the stakeholder to install QGIS.

DATA ACQUISITION	
Size of area	9.4 km2 / 940 ha
Drone	DJI Phantom 4 Multispectral and DJI Mavic mini
Sensor(s)	RGB only and deactivated other sensors
Flight plan software	Measure
Flight height	100m
GSD (Accuracy)	5.79 cm/pix
Number of images	23208
acquired	
Number of flights	23
Time invested in data	5 days
acquisition	
Georeferencing	Onboard GPS and GCP automated on drone 3D GCP

DATA PROCESSING & ANALYSIS	
Processing software	PIX4Dmapper and PIX4Dmatic
Processing time	PIX4Dmapper - 7 days in chunks and merging
	PIX4Dmatic - 10 hrs 16 minutes
Data products	Point Cloud
	DSM
	Orthomosaic
Analysis tools	ArcGIS Pro and QGIS
Analysis outputs	RGB raster data (orthomosaic)
	Contour map
	Land use vector map
Final outputs shared	Raw data
with stakeholders	Quality reports
	Processed data in chucks and merged
	Orthomosaic
	Maps
Data sharing	External drive
	G-drive